On the preprocessing and postprocessing of HRTF individualization based on sparse representation of anthropometric features
Individualization of head-related transfer functions (HRTFs) can be realized using the person's anthropometry with a pretrained model. This model usually establishes a direct linear or non-linear mapping from anthropometry to HRTFs in the training database. Due to the complex relation between a...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/82913 http://hdl.handle.net/10220/40370 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Individualization of head-related transfer functions (HRTFs) can be realized using the person's anthropometry with a pretrained model. This model usually establishes a direct linear or non-linear mapping from anthropometry to HRTFs in the training database. Due to the complex relation between anthropometry and HRTFs, the accuracy of this model depends heavily on the correct selection of the anthropometric features. To alleviate this problem and improve the accuracy of HRTF individualization, an indirect HRTF individualization framework was proposed recently, where HRTFs are synthesized using a sparse representation trained from the anthropometric features. In this paper, we extend their study on this framework by investigating the effects of different preprocessing and postprocessing methods on HRTF individualization. Our experimental results showed that preprocessing and postprocessing methods are crucial for achieving accurate HRTF individualization. |
---|