Achromatic super-oscillatory lenses with sub-wavelength focusing
Lenses are crucial to light-enabled technologies. Conventional lenses have been perfected to achieve near-diffraction-limited resolution and minimal chromatic aberrations. However, such lenses are bulky and cannot focus light into a hotspot smaller than half wavelength of light. Pupil filters, initi...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/82939 http://hdl.handle.net/10220/42420 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Lenses are crucial to light-enabled technologies. Conventional lenses have been perfected to achieve near-diffraction-limited resolution and minimal chromatic aberrations. However, such lenses are bulky and cannot focus light into a hotspot smaller than half wavelength of light. Pupil filters, initially suggested by Toraldo di Francia, can overcome the resolution constraints of conventional lenses, but are not intrinsically chromatically corrected. Here we report single-element planar lenses that not only deliver sub-wavelength focusing – beating the diffraction limit of conventional refractive lenses – but also focus light of different colors into the same hotspot. Using the principle of super-oscillations we designed and fabricated a range of binary dielectric and metallic lenses for visible and infrared parts of the spectrum that are manufactured on silicon wafers, silica substrates and optical fiber tips. Such low cost, compact lenses could be useful in mobile devices, data storage, surveillance, robotics, space applications, imaging, manufacturing with light, and spatially resolved nonlinear microscopies. |
---|