Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers
Research papers are often shared in Twitter to facilitate better readership. Tweet counts are embedded in journal websites and academic databases, to emphasize the impact of papers in social media. However, more number of tweets per paper is doubted as an indicator of research quality. Hence, there...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83075 http://hdl.handle.net/10220/47409 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-83075 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-830752020-03-07T12:15:48Z Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers Jothiramalingam, Keerthana Sesagiri Raamkumar, Aravind Ganesan, Savitha Muthu Kumaran, Selva Erdt, Mojisola Theng, Yin-Leng Žumer, Maja Dobreva, Milena Hinze, Annika Wee Kim Wee School of Communication and Information 20th International Conference on Asia-Pacific Digital Libraries (ICADL 2018) Centre for Healthy and Sustainable Cities (CHESS) Twitter Tweet sentiments DRNTU::Social sciences::Communication Research papers are often shared in Twitter to facilitate better readership. Tweet counts are embedded in journal websites and academic databases, to emphasize the impact of papers in social media. However, more number of tweets per paper is doubted as an indicator of research quality. Hence, there is a need to look at the intrinsic factors in tweets. Sentiment is one of such factors. Earlier studies have shown that neutral sentiment is predominantly found in tweets with links to research papers. In this study, the main intention was to have a closer look at the non-neutral sentiments in tweets to understand whether there is some scope for using such tweets in measuring the interim quality of the associated research papers. Tweets of 53,831 computer science papers from the Microsoft Academic Graph (MAG) dataset were extracted for sentiment classification. The non-neutral sentiment keywords and the attributed aspects of the papers were manually identified. Findings indicate that although neutral sentiments are majorly found in tweets, the research impact of papers which had all three sentiments was better than papers which had only neutral sentiment, in terms of both bibliometrics and altmetrics. Implications for future studies are also discussed. NRF (Natl Research Foundation, S’pore) Accepted version 2019-01-07T08:43:41Z 2019-12-06T15:11:19Z 2019-01-07T08:43:41Z 2019-12-06T15:11:19Z 2018 Conference Paper Sesagiri Raamkumar, A., Ganesan, S., Jothiramalingam, K., Muthu Kumaran, S., Erdt, M., & Theng, Y.-L. (2018). Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers. 20th International Conference on Asia-Pacific Digital Libraries (ICADL 2018). doi:10.1007/978-3-030-04257-8_7 https://hdl.handle.net/10356/83075 http://hdl.handle.net/10220/47409 10.1007/978-3-030-04257-8_7 en © 2018 Springer Nature Switzerland AG. All rights reserved. This paper was published in 20th International Conference on Asia-Pacific Digital Libraries (ICADL 2018) and is made available with permission of Springer Nature Switzerland AG. 12 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Twitter Tweet sentiments DRNTU::Social sciences::Communication |
spellingShingle |
Twitter Tweet sentiments DRNTU::Social sciences::Communication Jothiramalingam, Keerthana Sesagiri Raamkumar, Aravind Ganesan, Savitha Muthu Kumaran, Selva Erdt, Mojisola Theng, Yin-Leng Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
description |
Research papers are often shared in Twitter to facilitate better readership. Tweet counts are embedded in journal websites and academic databases, to emphasize the impact of papers in social media. However, more number of tweets per paper is doubted as an indicator of research quality. Hence, there is a need to look at the intrinsic factors in tweets. Sentiment is one of such factors. Earlier studies have shown that neutral sentiment is predominantly found in tweets with links to research papers. In this study, the main intention was to have a closer look at the non-neutral sentiments in tweets to understand whether there is some scope for using such tweets in measuring the interim quality of the associated research papers. Tweets of 53,831 computer science papers from the Microsoft Academic Graph (MAG) dataset were extracted for sentiment classification. The non-neutral sentiment keywords and the attributed aspects of the papers were manually identified. Findings indicate that although neutral sentiments are majorly found in tweets, the research impact of papers which had all three sentiments was better than papers which had only neutral sentiment, in terms of both bibliometrics and altmetrics. Implications for future studies are also discussed. |
author2 |
Žumer, Maja |
author_facet |
Žumer, Maja Jothiramalingam, Keerthana Sesagiri Raamkumar, Aravind Ganesan, Savitha Muthu Kumaran, Selva Erdt, Mojisola Theng, Yin-Leng |
format |
Conference or Workshop Item |
author |
Jothiramalingam, Keerthana Sesagiri Raamkumar, Aravind Ganesan, Savitha Muthu Kumaran, Selva Erdt, Mojisola Theng, Yin-Leng |
author_sort |
Jothiramalingam, Keerthana |
title |
Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
title_short |
Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
title_full |
Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
title_fullStr |
Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
title_full_unstemmed |
Investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
title_sort |
investigating the characteristics and research impact of sentiments in tweets with links to computer science research papers |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/83075 http://hdl.handle.net/10220/47409 |
_version_ |
1681045892925227008 |