PSDVec: A toolbox for incremental and scalable word embedding
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83166 http://hdl.handle.net/10220/42454 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners. |
---|