Experimental assessment of t-shaped reinforced concrete squat walls

Reinforced concrete (RC) T-shaped walls have been studied by many researchers over the past decades due to their popularity. Among them, however, few investigations are conducted regarding T-shaped squat walls, especially for their seismic behaviors under nonprincipal bending action. To build the da...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ma, Jiaxing, Zhang, Zhongwen, Li, Bing
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/83212
http://hdl.handle.net/10220/45078
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Reinforced concrete (RC) T-shaped walls have been studied by many researchers over the past decades due to their popularity. Among them, however, few investigations are conducted regarding T-shaped squat walls, especially for their seismic behaviors under nonprincipal bending action. To build the database and improve the understanding of structural walls, reversed cyclic tests of four RC T-shaped squat walls were conducted under displacement control. The variables were axial loads and lateral loading directions. Seismic responses of specimens were presented and assessed in detail from various aspects. Nonlinear section analyses and finite element modeling were also performed to facilitate investigations. The results indicated a significant shear lag effect exited in some T-shaped squat walls, which distinctly affected the strength and stiffness of test specimens. It was also found the impact of the shear lag effect increased with additional axial loads, and decreased as the test progressed.