Topic-Aware Deep Compositional Models for Sentence Classification
In recent years, deep compositional models have emerged as a popular technique for representation learning of sentence in computational linguistic and natural language processing. These models normally train various forms of neural networks on top of pretrained word embeddings using a task-specific...
محفوظ في:
المؤلفون الرئيسيون: | Zhao, Rui, Mao, Kezhi |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/83235 http://hdl.handle.net/10220/42502 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Investigations into semantic role labeling of propbank and nombank
بواسطة: JIANG ZHENG PING
منشور في: (2010) -
Exploring the use of pre-trained transformer-based models and semi-supervised learning to build training sets for text classification
بواسطة: Te, Gian Marco I.
منشور في: (2022) -
ReCo.ai: Using Generative Pre-trained Transformer 3 Model for a Chatbot in Answering Grade 10 Mathematics Questions
بواسطة: Amado, Prince Travis S., وآخرون
منشور في: (2023) -
Cold-start aware deep memory networks for multi-entity aspect-based sentiment analysis
بواسطة: SONG, Kaisong, وآخرون
منشور في: (2019) -
Analyzing job advertisements and skill descriptions using NLP techniques (part 1: data cleaning and pre-processing and part 4: front-end visualization/user interface) - collaboration with CAO
بواسطة: Dinglasan, Cris Anthony Sarmiento
منشور في: (2024)