Data-driven phase extraction for anomaly detection of repetitive human movements
Human movements during a specific task usually consist of inconsistency and variations. They are caused by different strategies, the pace of movement, or even anthropometric structure of each subject. This dissertation aims to develop a norm modelling methodology that can model a generic repetitive...
Saved in:
主要作者: | Jatesiktat, Prayook |
---|---|
其他作者: | Ang Wei Tech |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/83253 http://hdl.handle.net/10220/47998 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
相似書籍
-
Unsupervised phase learning and extraction from repetitive movements
由: Jatesiktat, Prayook, et al.
出版: (2020) -
Autonomous modeling of repetitive movement for rehabilitation exercise monitoring
由: Jatesiktat, Prayook, et al.
出版: (2022) -
Autonomous modeling of repetitive movement for rehabilitation exercise monitoring
由: Prayook Jatesiktat, et al.
出版: (2022) -
Autonomous modeling of repetitive movement for rehabilitation exercise monitoring
由: Jatesiktat P.
出版: (2023) -
A data-driven method for network anomaly attack detection in public transport system
由: Yin, Rui
出版: (2019)