Programmable Nano–Bio Interfaces for Functional Biointegrated Devices

A large amount of evidence has demonstrated the revolutionary role of nanosystems in the screening and shielding of biological systems. The explosive development of interfacing bioentities with programmable nanomaterials has conveyed the intriguing concept of nano–bio interfaces. Here, recent advanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Cai, Pingqiang, Leow, Wan Ru, Wang, Xiaoyuan, Wu, Yun-Long, Chen, Xiaodong
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/83303
http://hdl.handle.net/10220/42554
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A large amount of evidence has demonstrated the revolutionary role of nanosystems in the screening and shielding of biological systems. The explosive development of interfacing bioentities with programmable nanomaterials has conveyed the intriguing concept of nano–bio interfaces. Here, recent advances in functional biointegrated devices through the precise programming of nano–bio interactions are outlined, especially with regard to the rational assembly of constituent nanomaterials on multiple dimension scales (e.g., nanoparticles, nanowires, layered nanomaterials, and 3D-architectured nanomaterials), in order to leverage their respective intrinsic merits for different functions. Emerging nanotechnological strategies at nano–bio interfaces are also highlighted, such as multimodal diagnosis or “theragnostics”, synergistic and sequential therapeutics delivery, and stretchable and flexible nanoelectronic devices, and their implementation into a broad range of biointegrated devices (e.g., implantable, minimally invasive, and wearable devices). When utilized as functional modules of biointegrated devices, these programmable nano–bio interfaces will open up a new chapter for precision nanomedicine.