Numerical Investigation on Flow Separation Control of Low Reynolds Number Sinusoidal Aerofoils

The paper presents a computational analysis of the characteristics of a NACA 634-021 aerofoil incorporated with sinusoidal leading-edge protuberances at Re = 14,000. The protuberances are characterized by an amplitude and wavelength of 12% and 50% of the aerofoil chord length respectively. An unstea...

Full description

Saved in:
Bibliographic Details
Main Authors: Joy, Jesline, Ibrahim, Imran H., New, Tze How
Other Authors: School of Mechanical and Aerospace Engineering
Format: Conference or Workshop Item
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/83344
http://hdl.handle.net/10220/42539
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The paper presents a computational analysis of the characteristics of a NACA 634-021 aerofoil incorporated with sinusoidal leading-edge protuberances at Re = 14,000. The protuberances are characterized by an amplitude and wavelength of 12% and 50% of the aerofoil chord length respectively. An unsteady Reynolds Average Navier Stokes (RANS) analysis of the full-span aerofoils was carried out using Transition SST (Shear Stress Transport) turbulence model across five different angles-of-attack (AOA). Comparisons with previous experimental results reported good qualitative agreements in terms of flow separation when the aerofoils are pitched at higher AOAs. Results presented here comprised of near-wall flow visualizations of the flow separation bubble at the peaks and troughs of the protuberances. Additionally, results indicate that the aerofoil with leading-edge protuberances displayed distinctive wall shear streamline and iso-contour characteristics at different span-wise positions. This implies that even at a low Reynolds number, implementations of these leading-edge protuberances could have positive or adverse effects on flow separation.