Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk
We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the Metr...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83349 http://hdl.handle.net/10220/42534 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the Metropolis–Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L = 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, v* = 2/d and γ/v* = d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate. |
---|