High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating

Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cation...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Yilei, El-Deen, Ahmed G., Li, Peng, Oh, Bernice Hui Lin, Guo, Zanru, Khin, Mya Mya, Vikhe, Yogesh Shankar, Wang, Jing, Hu, Rebecca G., Boom, Remko M., Kline, Kimberly A., Becker, David Lawrence, Duan, Hongwei, Chan-Park, Mary B.
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/83397
http://hdl.handle.net/10220/41422
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Water disinfection materials should ideally be broad-spectrum-active, nonleachable, and noncontaminating to the liquid needing sterilization. Herein, we demonstrate a high-performance capacitive deionization disinfection (CDID) electrode made by coating an activated carbon (AC) electrode with cationic nanohybrids of graphene oxide-graft-quaternized chitosan (GO-QC). Our GO-QC/AC CDID electrode can achieve at least 99.9999% killing (i.e., 6 log reduction) of Escherichia coli in water flowing continuously through the CDID cell. Without the GO-QC coating, the AC electrode alone cannot kill the bacteria and adsorbs a much smaller fraction (<82.8 ± 1.8%) of E. coli from the same biocontaminated water. Our CDID process consists of alternating cycles of water disinfection followed by electrode regeneration, each a few minutes duration, so that this water disinfection process can be continuous and it only needs a small electrode voltage (2 V). With a typical brackish water biocontamination (with 104 CFU mL–1 bacteria), the GO-QC/AC electrodes can kill 99.99% of the E. coli in water for 5 h. The disinfecting GO-QC is securely attached on the AC electrode surface, so that it is noncontaminating to water, unlike many other chemicals used today. The GO-QC nanohybrids have excellent intrinsic antimicrobial properties in suspension form. Further, the GO component contributes toward the needed surface conductivity of the CDID electrode. This CDID process offers an economical method toward ultrafast, contaminant-free, and continuous killing of bacteria in biocontaminated water. The proposed strategy introduces a green in situ disinfectant approach for water purification.