Penalized empirical likelihood inference for sparse additive hazards regression with a diverging number of covariates

High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore app...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Shanshan, Xiang, Liming
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2016
主題:
在線閱讀:https://hdl.handle.net/10356/83404
http://hdl.handle.net/10220/41436
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English