M-OTDR sensing system based on 3D encoded microstructures

In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/fre...

全面介紹

Saved in:
書目詳細資料
Main Authors: Sun, Qizhen, Ai, Fan, Liu, Deming, Cheng, Jianwei, Luo, Hongbo, Peng, Kuan, Luo, Yiyang, Yan, Zhijun, Shum, Perry Ping
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2017
主題:
在線閱讀:https://hdl.handle.net/10356/83560
http://hdl.handle.net/10220/42661
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized.