Application of fractional calculus to modeling transient combustion of solid propellants
It was Zel’dovich, who first considered the transient combustion problem of solid propellants. Some more detailed models of that process have been developed afterwards. However, until today, numerical methods remain the prevailing tool for modeling unsteady combustion processes. In this work, it has...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83627 http://hdl.handle.net/10220/42685 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | It was Zel’dovich, who first considered the transient combustion problem of solid propellants. Some more detailed models of that process have been developed afterwards. However, until today, numerical methods remain the prevailing tool for modeling unsteady combustion processes. In this work, it has been demonstrated that at least one of the problems of the unsteady combustion theory, which previously investigated numerically, can be treated analytically by means of fractional calculus. The solution for the unsteady speed of combustion thus derived is then compared with the solution obtained by numerical means in previous studies. The comparison shows a good agreement between those results, especially for small values of time. |
---|