Magnetic properties of a two-dimensional electron gas strongly coupled to light

Considering the quantum dynamics of two-dimensional electron gas (2DEG) exposed to both a stationary magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the scattering-induced broadening of Landau levels. Therefore, various magnetoelectronic properties...

Full description

Saved in:
Bibliographic Details
Main Authors: Dini, K., Kibis, O. V., Shelykh, I. A.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/83881
http://hdl.handle.net/10220/42867
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Considering the quantum dynamics of two-dimensional electron gas (2DEG) exposed to both a stationary magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the scattering-induced broadening of Landau levels. Therefore, various magnetoelectronic properties of two-dimensional nanostructures (density of electronic states at Landau levels, magnetotransport, etc.) are sensitive to irradiation by light. Thus, the elaborated theory paves the way for optically controlling the magnetic properties of 2DEG.