Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

Hot-carrier solar cells can overcome the Shockley-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger proces...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Mingjie, Bhaumik, Saikat, Goh, Teck Wee, Kumar, Muduli Subas, Yantara, Natalia, Grätzel, Michael, Mhaisalkar, Subodh, Mathews, Nripan, Sum, Tze Chien
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/83895
http://hdl.handle.net/10220/42852
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Hot-carrier solar cells can overcome the Shockley-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.