Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference
We propose and study an optical microfiber coupler (OMC) sensor working near the turning point of effective group index difference between the even supermode and odd supermode to achieve high refractive index (RI) sensitivity. Theoretical calculations reveal that infinite sensitivity can be obtained...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83935 http://hdl.handle.net/10220/42881 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We propose and study an optical microfiber coupler (OMC) sensor working near the turning point of effective group index difference between the even supermode and odd supermode to achieve high refractive index (RI) sensitivity. Theoretical calculations reveal that infinite sensitivity can be obtained when the measured RI is close to the turning point value. This diameter-dependent turning point corresponds to the condition that the effective group index difference equals zero. To validate our proposed sensing mechanism, we experimentally demonstrate an ultrahigh sensitivity of 39541.7 nm/RIU at a low ambient RI of 1.3334 based on an OMC with the diameter of 1.4 μm. An even higher sensitivity can be achieved by carrying out the measurements at RI closer to the turning point. The resulting ultrasensitive RI sensing platform offers a substantial impact on a variety of applications from high performance trace analyte detection to small molecule sensing. |
---|