Mid-infrared sensing of molecular vibrational modes with tunable graphene plasmons
We study the tunable plasmons based on a graphene integrated gold grating structure to sense the vibrational modes of nanometric molecules. The greatly enhanced light-matter interaction and the broadband tunability of the localized graphene plasmonic resonance enable accurate label-free identificati...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84042 http://hdl.handle.net/10220/42946 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We study the tunable plasmons based on a graphene integrated gold grating structure to sense the vibrational modes of nanometric molecules. The greatly enhanced light-matter interaction and the broadband tunability of the localized graphene plasmonic resonance enable accurate label-free identification of the molecular vibrational modes at subwavelength scale. Our results may accelerate the further development of novel cost-effective biosensors with superior molecular chemical fingerprint sensitivity in an active graphene plasmonic device. |
---|