Maximal Order Codes over Number Fields
We present constructions of codes obtained from maximal orders over number fields. Particular cases include codes from algebraic number fields by Lenstra and Guruswami, codes from units of the ring of integers of number fields, and codes from both additive and multiplicative structures of maximal or...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84072 http://hdl.handle.net/10220/43584 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We present constructions of codes obtained from maximal orders over number fields. Particular cases include codes from algebraic number fields by Lenstra and Guruswami, codes from units of the ring of integers of number fields, and codes from both additive and multiplicative structures of maximal orders in central simple division algebras. The parameters of interest are the code rate and the minimum Hamming distance. An asymptotic study reveals several families of asymptotically good codes. |
---|