Analysis and Implementation of Pulse-Width Modulated DC-DC Converter for Electric Vehicles with Improved Efficiency
This paper presents new gating techniques to improve the efficiency of zero-voltage zero-current switching (ZVZCS) full-bridge DC-DC converter for battery charging in electric vehicles. The converter is assisted by a passive auxiliary circuit to extend the zero voltage switching range. The uncontrol...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/84101 http://hdl.handle.net/10220/42743 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This paper presents new gating techniques to improve the efficiency of zero-voltage zero-current switching (ZVZCS) full-bridge DC-DC converter for battery charging in electric vehicles. The converter is assisted by a passive auxiliary circuit to extend the zero voltage switching range. The uncontrolled auxiliary circuit current increases the conduction losses of the converter when gated with conventional phase-shift modulation (PSM) technique. The controlled auxiliary circuit current with the proposed pulse-width modulation (PWM) gating techniques increases the efficiency of the converter especially at light-load conditions compared to PSM. In this paper, the steady-state analysis of the converter auxiliary circuit with the PWM gating techniques is presented. A comparative loss analysis with PWM and PSM gating techniques is also given. A 1.2-kW, 100-kHz converter is implemented on ORCAD-Pspice and the simulation results are presented to validate the improvement in efficiency of the converter with the proposed PWM gating techniques. |
---|