Small sets of complementary observables
Two observables are called complementary if preparing a physical object in an eigenstate of one of them yields a completely random result in a measurement of the other. We investigate small sets of complementary observables that cannot be extended by yet another complementary observable. We construc...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84128 http://hdl.handle.net/10220/42938 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Two observables are called complementary if preparing a physical object in an eigenstate of one of them yields a completely random result in a measurement of the other. We investigate small sets of complementary observables that cannot be extended by yet another complementary observable. We construct explicit examples of unextendible sets up to dimension 16 and conjecture certain small sets to be unextendible in higher dimensions. Our constructions provide three complementary measurements, only one observable away from the ultimate minimum of two. Almost all our examples in finite dimensions are useful for discriminating pure states from some mixed states, and they help to shed light on the complex topology of the Bloch space of higher-dimensional quantum systems. |
---|