Fabrication of Polycaprolactone Scaffolds Using an E-Jet 3D Printing System
The electrohydrodynamic jetting (or E-jetting) 3D printing system developed in-house is used as a fiber-based fabrication approach which applies electrical voltage between a nozzle and a substrate to deposit fibers onto the substrate layer by layer. PCL (polycaprolactone) is chosen as biomaterial of...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84208 http://hdl.handle.net/10220/41694 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The electrohydrodynamic jetting (or E-jetting) 3D printing system developed in-house is used as a fiber-based fabrication approach which applies electrical voltage between a nozzle and a substrate to deposit fibers onto the substrate layer by layer. PCL (polycaprolactone) is chosen as biomaterial of scaffolds because of its bio-compatibility and bio-degradability. This study focused on the fiber characteristics impacted by two main parameters, solution dispensing feed rate and plotting speed, to optimize filament diameter, filament formation and stability. Scaffolds fabricated with 70wt% PCL with size of 30×30mm and pore size of 300×300µm were investigated and characterized. |
---|