Compressive Strength of Thin-Walled Cellular Core by Inkjet-Based Additive Manufacturing

Lightweight honeycomb structures are widely used in aerospace industry and sporting protective equipment. Commercially available honeycomb cores often come in the basic hexagonal cell shape. In this present work, variation of unit cell shapes such as hexagons, triangles and circles were fabricated b...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Zhou, H. F., Yeong, Wai Yee, Yap, Yee Ling, Lai, Y. M.
مؤلفون آخرون: School of Mechanical and Aerospace Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/84287
http://hdl.handle.net/10220/41700
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Lightweight honeycomb structures are widely used in aerospace industry and sporting protective equipment. Commercially available honeycomb cores often come in the basic hexagonal cell shape. In this present work, variation of unit cell shapes such as hexagons, triangles and circles were fabricated by inkjet-based additive manufacturing (AM) using photopolymer materials. Inkjet-based AM is able to manufacture thin walled products with high dimensional stability and hence it is suitable to fabricate thin-walled honeycomb core. In this paper, flatwise compression tests were performed on various geometrical parameters with constant relative density. The results obtained show that the compressive properties of honeycomb are largely affected by the cell shapes.