Ultrafast coherent absorption in diamond metamaterials

Diamond is introduced as a material platform for visible/near‐infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light‐by‐light modulation at few‐optical‐cycle (6 fs) pulse durations. “Coher...

Full description

Saved in:
Bibliographic Details
Main Authors: Karvounis, Artemios, Nalla, Venkatram, MacDonald, Kevin F., Zheludev, Nikolay I.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/84301
http://hdl.handle.net/10220/45077
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Diamond is introduced as a material platform for visible/near‐infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light‐by‐light modulation at few‐optical‐cycle (6 fs) pulse durations. “Coherent control” of absorption in planar (subwavelength‐thickness) materials has emerged recently as a mechanism for high‐contrast all‐optical gating, with a speed of response that is limited only by the spectral width of the absorption line. It is shown here that a free‐standing diamond membrane structured by focused ion beam milling can provide strong, spectrally near‐flat absorption over a visible to near‐infrared wavelength range that is wide enough (wider than is characteristically achievable in plasmonic metal metasurfaces) to facilitate coherent modulation of ultrashort optical pulses comprising only a few oscillations of electromagnetic field.