Solvothermal synthesis of Li3VO4: Morphology control and electrochemical performance as anode for lithium-ion batteries
In this work, orthorhombic Li3VO4 with the controllable morphology has been synthesized by tuning the solvent composition (volume ratios of ethanol to deionized water) in a solvothermal approach. The resulting Li3VO4 samples with various morphologies (coral-shaped particle, self-assembled hierarchic...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84369 http://hdl.handle.net/10220/44065 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this work, orthorhombic Li3VO4 with the controllable morphology has been synthesized by tuning the solvent composition (volume ratios of ethanol to deionized water) in a solvothermal approach. The resulting Li3VO4 samples with various morphologies (coral-shaped particle, self-assembled hierarchical microsphere, cube-like particle, sheet-like structure) show then different electrochemical performances when employed as anodes for Li-ion battery applications. The Li3VO4 with self-assembled hierarchical microsphere morphology (volume ratio of ethanol to deionized water at 15:15) exhibits the best electrochemical performance. The subsequent carbon coating process on microsphere samples is claimed to significantly improve both the capacities at both low (350–430 mAh g−1 at 100 mA g−1) and high current (180–350 mAh g−1 at 2 A g−1) conditions, and their excellent cycling stability. |
---|