Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression

Regulation of transgene systems is needed to develop innovative medicines. However, noninvasive remote control of gene expression has been rarely developed and remains challenging. We herein synthesize a near-infrared (NIR) absorbing dendronized semiconducting polymer (DSP) and utilize it as a photo...

Full description

Saved in:
Bibliographic Details
Main Authors: Lyu, Yan, Cui, Dong, Sun, He, Miao, Yansong, Duan, Hongwei, Pu, Kanyi
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/84415
http://hdl.handle.net/10220/43590
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Regulation of transgene systems is needed to develop innovative medicines. However, noninvasive remote control of gene expression has been rarely developed and remains challenging. We herein synthesize a near-infrared (NIR) absorbing dendronized semiconducting polymer (DSP) and utilize it as a photothermal nanocarrier not only to efficiently deliver genes but also to spatiotemporally control gene expression in conjunction with heat-inducible promoter. DSP has a high photothermal conversion efficiency (44.2 %) at 808 nm, permitting fast transduction of NIR light into thermal signals for intracellular activation of transcription. Such a DSP-mediated remote activation can rapidly and safely result in 25- and 4.5-fold increases in the expression levels of proteins in living cells and mice, respectively. This study thus provides a promising approach to optically regulate transgene systems for on-demand therapeutic transgene dosing.