Design, fabrication and evaluation of pclgraphene scaffolds for bone regeneration
Scaffolds are physical substrates for cell attachment, proliferation and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibili...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84426 http://hdl.handle.net/10220/41798 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Scaffolds are physical substrates for cell attachment, proliferation and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blend process. Scaffolds with the same architecture but different contents of pristine graphene were evaluated from a chemical, morphological and mechanical view. Scaffolds with regular and reproducible architecture and a uniform dispersion of pristine graphene flakes were produced. It was also possible to observe that the addition of pristine graphene improves the mechanical performance of the scaffolds. |
---|