Yang-Lee zeros of the Q-state Potts model on recursive lattices
The Yang-Lee zeros of the Q-state Potts model on recursive lattices are studied for noninteger values of Q. Considering one-dimensional (1D) lattice as a Bethe lattice with coordination number equal to 2, the location of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is comple...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84463 http://hdl.handle.net/10220/10183 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The Yang-Lee zeros of the Q-state Potts model on recursive lattices are studied for noninteger values of Q. Considering one-dimensional (1D) lattice as a Bethe lattice with coordination number equal to 2, the location of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of neutral periodical points. Three different regimes for Yang-Lee zeros are found for Q>1 and 0<Q<1. An exact analytical formula for the equation of phase transition points is derived for the 1D case. It is shown that Yang-Lee zeros of the Q-state Potts model on a Bethe lattice are located on arcs of circles with the radius depending on Q and temperature for Q>1. Complex magnetic field metastability regions are studied for the Q>1 and 0<Q<1 cases. The Yang-Lee edge singularity exponents are calculated for both 1D and Bethe lattice Potts models. The dynamics of metastability regions for different values of Q is studied numerically. |
---|