An alternative method for constructing interpolatory subdivision from approximating subdivision

This paper presents a new perspective for constructing interpolatory subdivision from primal approximating subdivision. The basic idea is constructing the subdivision rule for new inserted vertices of a new interpolatory subdivision scheme based on an approximating subdivision algorithm applied to a...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Xin., Zheng, Jianmin.
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/84490
http://hdl.handle.net/10220/13101
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper presents a new perspective for constructing interpolatory subdivision from primal approximating subdivision. The basic idea is constructing the subdivision rule for new inserted vertices of a new interpolatory subdivision scheme based on an approximating subdivision algorithm applied to a local configuration of the mesh with one vertex updated for interpolation of the vertex. This idea is demonstrated by presenting two new interpolatory subdivision schemes based on Catmull–Clark subdivision for an arbitrary polygonal mesh and Loop subdivision for a triangular mesh, respectively. These algorithms are simple and have a small stencil for computing new points. The new perspective also shows a link between those classic approximating and interpolatory subdivision algorithms such as cubic B-spline curve subdivision and the four-point interpolatory subdivision, Catmull–Clark subdivision and Kobbeltʼs interpolatory scheme, and Loop subdivision and the butterfly algorithm.