Active magnetic decoupling for improving the performance of integrated LCL-filters in grid-connected converters

Magnetically integrating converter-side and grid-side inductors is an effective way to reduce the volume and weight of LCL filters. However, the inevitable magnetic coupling between the two coils weakens the high order harmonic attenuation ability of LCL filters. In this paper, an active magnetic de...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Xiaoqiang, Fang, Jingyang, Lin, Pengfeng, Tang, Yi
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2019
主題:
在線閱讀:https://hdl.handle.net/10356/84528
http://hdl.handle.net/10220/50108
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Magnetically integrating converter-side and grid-side inductors is an effective way to reduce the volume and weight of LCL filters. However, the inevitable magnetic coupling between the two coils weakens the high order harmonic attenuation ability of LCL filters. In this paper, an active magnetic decoupling method is proposed to tackle this issue, and the basic operation principle is to counteract the coupling inductor in the filter capacitor branch by constructing a decoupling inductor. A step-by-step design guidance of integrated LCL filters with the proposed magnetic decoupling method is presented in detail, and it is also found that a further volume reduction of magnetic cores can be achieved compared to the existing passive decoupling method. Experimental results finally verify the effectiveness of the proposed method.