Ensemble differential evolution with dynamic subpopulations and adaptive clearing for solving dynamic optimization problems
Many real-life optimization problems are dynamic in time, demanding optimization algorithms to perform search for the best solutions in a time-varying problem space. Among population-based Evolutionary Algorithms (EAs), Differential Evolution (DE) is a simple but highly effective method that has bee...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84643 http://hdl.handle.net/10220/12029 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Many real-life optimization problems are dynamic in time, demanding optimization algorithms to perform search for the best solutions in a time-varying problem space. Among population-based Evolutionary Algorithms (EAs), Differential Evolution (DE) is a simple but highly effective method that has been successfully applied to a wide variety of problems. We propose a technique to solve dynamic optimization problems (DOPs) using a multi-population version of DE that incorporates an ensemble of adaptive mutation strategies with a greedy tournament global search method, as well as keeps track of past good solutions in an archive with adaptive clearing to enhance population diversity. |
---|