Ensemble differential evolution with dynamic subpopulations and adaptive clearing for solving dynamic optimization problems
Many real-life optimization problems are dynamic in time, demanding optimization algorithms to perform search for the best solutions in a time-varying problem space. Among population-based Evolutionary Algorithms (EAs), Differential Evolution (DE) is a simple but highly effective method that has bee...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/84643 http://hdl.handle.net/10220/12029 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Many real-life optimization problems are dynamic in time, demanding optimization algorithms to perform search for the best solutions in a time-varying problem space. Among population-based Evolutionary Algorithms (EAs), Differential Evolution (DE) is a simple but highly effective method that has been successfully applied to a wide variety of problems. We propose a technique to solve dynamic optimization problems (DOPs) using a multi-population version of DE that incorporates an ensemble of adaptive mutation strategies with a greedy tournament global search method, as well as keeps track of past good solutions in an archive with adaptive clearing to enhance population diversity. |
---|