Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B
Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84686 http://hdl.handle.net/10220/41912 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-84686 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-846862022-02-16T16:31:13Z Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B Chénard, Caroline Wirth, Jennifer F. Suttle, Curtis A. Singapore Centre for Environmental Life Sciences Engineering filamentous cyanobacteria CRISPR array Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. Published version 2016-12-21T04:26:07Z 2019-12-06T15:49:30Z 2016-12-21T04:26:07Z 2019-12-06T15:49:30Z 2016 Journal Article Chénard, C., Wirth, J. F., & Suttle, C. A. (2016). Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B. mBio, 7(3), e00667-16-. https://hdl.handle.net/10356/84686 http://hdl.handle.net/10220/41912 10.1128/mBio.00667-16 27302758 en mBio © 2016 Chénard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. 11 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
filamentous cyanobacteria CRISPR array |
spellingShingle |
filamentous cyanobacteria CRISPR array Chénard, Caroline Wirth, Jennifer F. Suttle, Curtis A. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B |
description |
Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. |
author2 |
Singapore Centre for Environmental Life Sciences Engineering |
author_facet |
Singapore Centre for Environmental Life Sciences Engineering Chénard, Caroline Wirth, Jennifer F. Suttle, Curtis A. |
format |
Article |
author |
Chénard, Caroline Wirth, Jennifer F. Suttle, Curtis A. |
author_sort |
Chénard, Caroline |
title |
Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B |
title_short |
Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B |
title_full |
Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B |
title_fullStr |
Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B |
title_full_unstemmed |
Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B |
title_sort |
viruses infecting a freshwater filamentous cyanobacterium (nostoc sp.) encode a functional crispr array and a proteobacterial dna polymerase b |
publishDate |
2016 |
url |
https://hdl.handle.net/10356/84686 http://hdl.handle.net/10220/41912 |
_version_ |
1725985630779867136 |