Effect of Nano-Particle Addition on Grain Structure Evolution of Friction Stir-Processed Al 6061 During Postweld Annealing
The fabrication of nano-composites is challenging because uniform dispersion of nano-sized reinforcements in metallic substrate is difficult to achieve using powder metallurgy or liquid processing methods. In the present study, Al-based nano-composites reinforced with Al2O3 particles have been succe...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84702 http://hdl.handle.net/10220/41902 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The fabrication of nano-composites is challenging because uniform dispersion of nano-sized reinforcements in metallic substrate is difficult to achieve using powder metallurgy or liquid processing methods. In the present study, Al-based nano-composites reinforced with Al2O3 particles have been successfully fabricated using friction stir processing. The effects of nano-Al2O3 particle addition on grain structure evolution of friction stir-processed Al matrix during post-weld annealing were investigated. It was revealed that the pinning effect of Al2O3 particles retarded grain growth and completely prevented abnormal grain growth during postweld annealing at 470°C. However, abnormal grain growth can still occur when the composite material was annealed at 530°C. The mechanism involved in the grain structure evolution and the effect of nano-sized particle addition on the mechanical properties were discussed therein. |
---|