Dimensionality reduction for computer facial animation
This paper describes the usage of dimensionality reduction techniques for computer facial animation. Techniques such as Principal Components Analysis (PCA), Expectation–Maximization (EM) algorithm for PCA, Multidimensional Scaling (MDS), and Locally Linear Embedding (LLE) are compared for the purpos...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/84786 http://hdl.handle.net/10220/11106 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | This paper describes the usage of dimensionality reduction techniques for computer facial animation. Techniques such as Principal Components Analysis (PCA), Expectation–Maximization (EM) algorithm for PCA, Multidimensional Scaling (MDS), and Locally Linear Embedding (LLE) are compared for the purpose of facial animation of different emotions. The experimental results on our facial animation data demonstrate the usefulness of dimensionality reduction techniques for both space and time reduction. In particular, the EMPCA algorithm performed especially well in our dataset, with negligible error of only 1–2%. |
---|