Generalized biased discriminant analysis for content-based image retrieval

Biased discriminant analysis (BDA) is one of the most promising relevance feedback (RF) approaches to deal with the feedback sample imbalance problem for content-based image retrieval (CBIR). However, the singular problem of the positive within-class scatter and the Gaussian distribution assumption...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Lining., Wang, Lipo., Lin, Weisi.
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/84923
http://hdl.handle.net/10220/8192
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Biased discriminant analysis (BDA) is one of the most promising relevance feedback (RF) approaches to deal with the feedback sample imbalance problem for content-based image retrieval (CBIR). However, the singular problem of the positive within-class scatter and the Gaussian distribution assumption for positive samples are two main obstacles impeding the performance of BDA RF for CBIR. To avoid both of these intrinsic problems in BDA, in this paper, we propose a novel algorithm called generalized BDA (GBDA) for CBIR. The GBDA algorithm avoids the singular problem by adopting the differential scatter discriminant criterion (DSDC) and handles the Gaussian distribution assumption by redesigning the between-class scatter with a nearest neighbor approach. To alleviate the overfitting problem, GBDA integrates the locality preserving principle; therefore, a smooth and locally consistent transform can also be learned. Extensive experiments show that GBDA can substantially outperform the original BDA, its variations, and related support-vector-machine-based RF algorithms.