Generalized biased discriminant analysis for content-based image retrieval
Biased discriminant analysis (BDA) is one of the most promising relevance feedback (RF) approaches to deal with the feedback sample imbalance problem for content-based image retrieval (CBIR). However, the singular problem of the positive within-class scatter and the Gaussian distribution assumption...
Saved in:
Main Authors: | Zhang, Lining., Wang, Lipo., Lin, Weisi. |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2012
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/84923 http://hdl.handle.net/10220/8192 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Semisupervised biased maximum margin analysis for interactive image retrieval
由: Zhang, Lining., et al.
出版: (2012) -
Content-based image retrieval with statistical machine learning.
由: Zhang, Lining.
出版: (2013) -
Conjunctive patches subspace learning with side information for collaborative image retrieval
由: Zhang, Lining., et al.
出版: (2013) -
Content-based image retrieval system in pathology
由: Loh, Jasmine.
出版: (2011) -
Content-based image indexing and retrieval
由: Lim, Chin Yong.
出版: (2012)