Wind-thermal power system dispatch using MLSAD model and GSOICLW algorithm
The decision support model of mean-lower semi-absolute deviation (MLSAD) and the optimization algorithm of group search optimizer with intraspecific competition and lévy walk (GSOICLW) are presented to solve wind-thermal power system dispatch. MLSAD model takes the profit and downside risk into acco...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84994 http://hdl.handle.net/10220/42069 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The decision support model of mean-lower semi-absolute deviation (MLSAD) and the optimization algorithm of group search optimizer with intraspecific competition and lévy walk (GSOICLW) are presented to solve wind-thermal power system dispatch. MLSAD model takes the profit and downside risk into account simultaneously brought by uncertain wind power. Using a risk tolerance parameter, the model can be converted to a single-optimization problem, which is solved by an improved optimization algorithm, GSOICLW. Afterwards, both the model and the algorithm are tested on a modified IEEE 30-bus power system. Simulation results demonstrate that the MLSAD model can well solve wind-thermal power system dispatch. The study also verifies GSOICLW obtains better convergent dispatching solutions, in comparison with other evolutionary algorithms, such as group search optimizer and particle swarm optimizer. |
---|