Femtosecond laser-induced iridescent effect on AZ31B magnesium alloy surface
Both micro-ripples and nano-ripples were firstly reported at AZ31B magnesium alloy surface irradiated by femtosecond laser in atmospheric environment. Iridescent effect was also demonstrated over a large area of the irradiated surface induced by scanning laser beam. Results revealed that the colour...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85038 http://hdl.handle.net/10220/39761 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Both micro-ripples and nano-ripples were firstly reported at AZ31B magnesium alloy surface irradiated by femtosecond laser in atmospheric environment. Iridescent effect was also demonstrated over a large area of the irradiated surface induced by scanning laser beam. Results revealed that the colour effect was mainly attributed to the nano-ripples with broad distribution of periods acting as diffraction gratings, and intensity of the structural colour was greatly influenced by morphology evolution of the micro-ripples with laser processing. It was suggested that near-field interference between surface plasmons polaritons and incident laser light determined the formation of the nano-ripples, and initial surface roughness combing with such interference lead to the formation of the micro-ripples. Potential applications of such effect on Mg alloys and how to apply the technique to other materials with different properties was further proposed. |
---|