Cross-Modal Deep Variational Hashing
In this paper, we propose a cross-modal deep variational hashing (CMDVH) method to learn compact binary codes for cross-modality multimedia retrieval. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85091 http://hdl.handle.net/10220/44014 http://openaccess.thecvf.com/content_iccv_2017/html/Liong_Cross-Modal_Deep_Variational_ICCV_2017_paper.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we propose a cross-modal deep variational hashing (CMDVH) method to learn compact binary codes for cross-modality multimedia retrieval. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep fusion neural network to learn non-linear transformations from image-text input pairs, such that a unified binary code is achieved in a discrete and discriminative manner using a classification-based hinge-loss criterion. We then design modality-specific neural networks in a probabilistic manner such that we model a latent variable to be close as possible from the inferred binary codes, at the same time approximated by a posterior distribution regularized by a known prior, which is suitable for out-of-sample extension. Experimental results on three benchmark datasets show the efficacy of the proposed approach. |
---|