Optically tailored trapping geometries for ultracold atoms on a type-II superconducting chip
Superconducting atom chips have very significant advantages in realizing trapping structures for ultracold atoms compared to conventional atom chips. We extend these advantages further by developing the ability to dynamically tailor the superconducting trap architecture. Heating the chosen parts of...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85236 http://hdl.handle.net/10220/49206 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Superconducting atom chips have very significant advantages in realizing trapping structures for ultracold atoms compared to conventional atom chips. We extend these advantages further by developing the ability to dynamically tailor the superconducting trap architecture. Heating the chosen parts of a superconducting film by transferring optical images onto its surface, we are able to modify the current density distribution and create desired trapping potentials. This method enables us to change the shape and structure of magnetic traps, enabling versatile applications in atomtronics. |
---|