Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing
Many armies are replacing heavy slow tracked vehicles with their lighter wheeled counterparts for their high mobility and better shoot and scoot capabilities. These features make the vehicle hard to track and target in counter-battery fire. However, when firing high calibre guns, spades are needed t...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/85435 http://hdl.handle.net/10220/11769 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-85435 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-854352020-03-07T13:19:24Z Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing Hosseinloo, Ashkan Haji. Vahdati, Nader. Yap, Fook Fah. School of Mechanical and Aerospace Engineering Many armies are replacing heavy slow tracked vehicles with their lighter wheeled counterparts for their high mobility and better shoot and scoot capabilities. These features make the vehicle hard to track and target in counter-battery fire. However, when firing high calibre guns, spades are needed to connect the vehicle chassis to the ground, so as to transmit parts of the large firing force directly to the ground. Use of spades hinders the vehicle mobility, while elimination of them paves the way for having quicker and more mobile wheeled vehicles. In this article, vibration response of a spade-less High Mobility Multi-purpose Wheeled Vehicle with a mounted mortar is studied and controlled using stock passive, optimised passive, and optimised semi-active dampers as primary suspensions. The spade-less vehicle with optimised passive and semi-active dampers has a better response in heave, pitch, and fore-aft motions and can fire with better accuracy compared to a spade-less vehicle with stock passive dampers. Simulation results indicate that the spades can be removed from wheeled military vehicles if the precautions are taken for the tyres. 2013-07-17T07:24:58Z 2019-12-06T16:03:42Z 2013-07-17T07:24:58Z 2019-12-06T16:03:42Z 2012 2012 Journal Article Hosseinloo, A. H., Vahdati, N., & Yap, F. F. (2012). Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility , 50(10), 1515-1537. https://hdl.handle.net/10356/85435 http://hdl.handle.net/10220/11769 10.1080/00423114.2012.675076 en Vehicle system dynamics : international journal of vehicle mechanics and mobility © 2012 Taylor & Francis. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
Many armies are replacing heavy slow tracked vehicles with their lighter wheeled counterparts for their high mobility and better shoot and scoot capabilities. These features make the vehicle hard to track and target in counter-battery fire. However, when firing high calibre guns, spades are needed to connect the vehicle chassis to the ground, so as to transmit parts of the large firing force directly to the ground. Use of spades hinders the vehicle mobility, while elimination of them paves the way for having quicker and more mobile wheeled vehicles. In this article, vibration response of a spade-less High Mobility Multi-purpose Wheeled Vehicle with a mounted mortar is studied and controlled using stock passive, optimised passive, and optimised semi-active dampers as primary suspensions. The spade-less vehicle with optimised passive and semi-active dampers has a better response in heave, pitch, and fore-aft motions and can fire with better accuracy compared to a spade-less vehicle with stock passive dampers. Simulation results indicate that the spades can be removed from wheeled military vehicles if the precautions are taken for the tyres. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Hosseinloo, Ashkan Haji. Vahdati, Nader. Yap, Fook Fah. |
format |
Article |
author |
Hosseinloo, Ashkan Haji. Vahdati, Nader. Yap, Fook Fah. |
spellingShingle |
Hosseinloo, Ashkan Haji. Vahdati, Nader. Yap, Fook Fah. Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
author_sort |
Hosseinloo, Ashkan Haji. |
title |
Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
title_short |
Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
title_full |
Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
title_fullStr |
Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
title_full_unstemmed |
Performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
title_sort |
performance of spade-less wheeled military vehicles with passive and semi-active suspensions during mortar firing |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/85435 http://hdl.handle.net/10220/11769 |
_version_ |
1681041812147404800 |