Exploiting electrical grid for accurate and secure clock synchronization
Desynchronized clocks among network nodes in critical infrastructures can degrade system performance and even lead to safety incidents. Clock synchronization protocols based on network message exchanges, though widely used in current network systems, are susceptible to delay attacks against the pack...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85486 http://hdl.handle.net/10220/50122 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-85486 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-854862020-03-07T11:48:55Z Exploiting electrical grid for accurate and secure clock synchronization Viswanathan, Sreejaya Tan, Rui Yau, David K. Y. School of Computer Science and Engineering Engineering::Computer science and engineering Clock Synchronization Security Desynchronized clocks among network nodes in critical infrastructures can degrade system performance and even lead to safety incidents. Clock synchronization protocols based on network message exchanges, though widely used in current network systems, are susceptible to delay attacks against the packet transmission. This vulnerability cannot be solved by conventional security measures, such as encryption, and remains an open problem. This article proposes to use the sine voltage waveform of a utility power grid to synchronize network nodes connected to the same grid. Our experiments demonstrate that minute fluctuations of the voltage’s cycle length encode fine-grained global time information in Singapore’s utility grid. Based on this key result, we develop a clock synchronization approach that achieves good accuracy and is provably secure against packet-delay attacks. Implementation results show that our approach achieves an average synchronization error of 0.1 ms between two network nodes that are deployed in office and residential buildings 10 km apart. When the proposed system is deployed within the same floor of an office building, the error reduces to 10 μs. When there are heavy industrial loads close to one of the two nodes 10 km apart, the system can still maintain subsecond accuracy. Moreover, when the two nodes are deployed within the same building floor with industrial loads nearby, the average synchronization error is 34 μs. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Accepted version 2019-10-10T02:39:40Z 2019-12-06T16:04:41Z 2019-10-10T02:39:40Z 2019-12-06T16:04:41Z 2018 Journal Article Viswanathan, S., Tan, R., & Yau, D. K. Y. (2018). Exploiting electrical grid for accurate and secure clock synchronization. ACM Transactions on Sensor Networks, 14(2), 1-32. doi:10.1145/3195182 1550-4859 https://hdl.handle.net/10356/85486 http://hdl.handle.net/10220/50122 10.1145/3195182 en ACM Transactions on Sensor Networks © 2018 ACM. All rights reserved. This paper was published in ACM Transactions on Sensor Networks and is made available with permission of ACM. 11 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Clock Synchronization Security |
spellingShingle |
Engineering::Computer science and engineering Clock Synchronization Security Viswanathan, Sreejaya Tan, Rui Yau, David K. Y. Exploiting electrical grid for accurate and secure clock synchronization |
description |
Desynchronized clocks among network nodes in critical infrastructures can degrade system performance and even lead to safety incidents. Clock synchronization protocols based on network message exchanges, though widely used in current network systems, are susceptible to delay attacks against the packet transmission. This vulnerability cannot be solved by conventional security measures, such as encryption, and remains an open problem. This article proposes to use the sine voltage waveform of a utility power grid to synchronize network nodes connected to the same grid. Our experiments demonstrate that minute fluctuations of the voltage’s cycle length encode fine-grained global time information in Singapore’s utility grid. Based on this key result, we develop a clock synchronization approach that achieves good accuracy and is provably secure against packet-delay attacks. Implementation results show that our approach achieves an average synchronization error of 0.1 ms between two network nodes that are deployed in office and residential buildings 10 km apart. When the proposed system is deployed within the same floor of an office building, the error reduces to 10 μs. When there are heavy industrial loads close to one of the two nodes 10 km apart, the system can still maintain subsecond accuracy. Moreover, when the two nodes are deployed within the same building floor with industrial loads nearby, the average synchronization error is 34 μs. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Viswanathan, Sreejaya Tan, Rui Yau, David K. Y. |
format |
Article |
author |
Viswanathan, Sreejaya Tan, Rui Yau, David K. Y. |
author_sort |
Viswanathan, Sreejaya |
title |
Exploiting electrical grid for accurate and secure clock synchronization |
title_short |
Exploiting electrical grid for accurate and secure clock synchronization |
title_full |
Exploiting electrical grid for accurate and secure clock synchronization |
title_fullStr |
Exploiting electrical grid for accurate and secure clock synchronization |
title_full_unstemmed |
Exploiting electrical grid for accurate and secure clock synchronization |
title_sort |
exploiting electrical grid for accurate and secure clock synchronization |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/85486 http://hdl.handle.net/10220/50122 |
_version_ |
1681042374688505856 |