Magnetic Janus Particles Synthesized by Droplet Micro-magnetofluidic Techniques for Protein Detection
Magnetic droplets on a microfluidic platform can acts as micro-robots, providing wireless, remote, and programmable control. This field of droplet micro-magnetofluidics (DMMF) is useful for droplet merging, mixing and synthesis of Janus structures. Specifically, magnetic Janus particles (MJP) are us...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85543 http://hdl.handle.net/10220/43778 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Magnetic droplets on a microfluidic platform can acts as micro-robots, providing wireless, remote, and programmable control. This field of droplet micro-magnetofluidics (DMMF) is useful for droplet merging, mixing and synthesis of Janus structures. Specifically, magnetic Janus particles (MJP) are useful for protein and DNA detection as well as magnetically controlled bioprinting. However, synthesis of MJP with control of the functional phases is a challenge. Hence, we developed a high flow rate, surfactant-free, wash-less method to synthesize MJP by integration of DMMF with hybrid magnetic fields. The effect of flow rate, flow rate ratio, and the hybrid magnetic field on the magnetic component of the Janus droplets and the MJP was investigated. It was found that the magnetization, particle size, and phase distribution inside MJP could be readily tuned by the flow rates and the magnetic field. The magnetic component in the MJP could be concentrated after mixing at flow rate ratio values less than 7.5 and flow rates less than 3 ml/h. The experimental results and our simulations are in good agreement. The synthesized magnetic-fluorescent Janus particles were used for protein detection, with BSA as a model protein. |
---|