Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications
Membrane fouling by particulates is largely driven by permeate drag that causes the foulants to move towards the membrane. Cross-flow is used to induce shear at the membrane surface to mitigate the fouling. This study describes the flow-field mitigation of membrane fouling (FMMF) technique that redu...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85616 http://hdl.handle.net/10220/43785 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-85616 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-856162020-03-07T11:35:27Z Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications Zamani, Farhad Tanudjaja, Henry Jonathan Akhondi, Ebrahim Krantz, William Bill Fane, Anthony Gordon Chew, Jia Wei School of Chemical and Biomedical Engineering Nanyang Environment and Water Research Institute Singapore Membrane Technology Centre Microfiltration Cross-flow membrane applications Membrane fouling by particulates is largely driven by permeate drag that causes the foulants to move towards the membrane. Cross-flow is used to induce shear at the membrane surface to mitigate the fouling. This study describes the flow-field mitigation of membrane fouling (FMMF) technique that reduces the fouling based on a judicious manipulation of the flow-field by inclining the channel walls to counter the permeate drag experienced by the foulants. The key mechanism is the additional transverse (i.e., orthogonal to the fluid flow direction) fluid vector caused by a small inclination of the channel walls (on the order of one to a few degrees). Both simulation and experiments confirm the efficacy of FMMF in mitigating fouling at a reduced energy requirement compared with the conventional channels with parallel walls. Simulations over a range of permeate fluxes indicated that a slight inclination angle of 1.15° can give a deposition factor less than that in the conventional channel with parallel walls even at twice the permeate flux. Direct observation through the membrane (DOTM) experiments for fouling using two particle diameters over a range of power inputs showed that the critical fluxes were significantly increased in the FMMF module compared with the conventional module. This study provides a proof-of-concept of the principle underlying FMMF and underscores the potential benefits. The direction for further development and scale-up is suggested. MOE (Min. of Education, S’pore) EDB (Economic Devt. Board, S’pore) 2017-09-22T04:52:41Z 2019-12-06T16:07:11Z 2017-09-22T04:52:41Z 2019-12-06T16:07:11Z 2016 Journal Article Zamani, F., Tanudjaja, H. J., Akhondi, E., Krantz, W. B., Fane, A. G., & Chew, J. W. (2017). Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications. Journal of Membrane Science, 526, 377-386. 0376-7388 https://hdl.handle.net/10356/85616 http://hdl.handle.net/10220/43785 10.1016/j.memsci.2016.12.055 en Journal of Membrane Science © 2016 Elsevier |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Microfiltration Cross-flow membrane applications |
spellingShingle |
Microfiltration Cross-flow membrane applications Zamani, Farhad Tanudjaja, Henry Jonathan Akhondi, Ebrahim Krantz, William Bill Fane, Anthony Gordon Chew, Jia Wei Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications |
description |
Membrane fouling by particulates is largely driven by permeate drag that causes the foulants to move towards the membrane. Cross-flow is used to induce shear at the membrane surface to mitigate the fouling. This study describes the flow-field mitigation of membrane fouling (FMMF) technique that reduces the fouling based on a judicious manipulation of the flow-field by inclining the channel walls to counter the permeate drag experienced by the foulants. The key mechanism is the additional transverse (i.e., orthogonal to the fluid flow direction) fluid vector caused by a small inclination of the channel walls (on the order of one to a few degrees). Both simulation and experiments confirm the efficacy of FMMF in mitigating fouling at a reduced energy requirement compared with the conventional channels with parallel walls. Simulations over a range of permeate fluxes indicated that a slight inclination angle of 1.15° can give a deposition factor less than that in the conventional channel with parallel walls even at twice the permeate flux. Direct observation through the membrane (DOTM) experiments for fouling using two particle diameters over a range of power inputs showed that the critical fluxes were significantly increased in the FMMF module compared with the conventional module. This study provides a proof-of-concept of the principle underlying FMMF and underscores the potential benefits. The direction for further development and scale-up is suggested. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Zamani, Farhad Tanudjaja, Henry Jonathan Akhondi, Ebrahim Krantz, William Bill Fane, Anthony Gordon Chew, Jia Wei |
format |
Article |
author |
Zamani, Farhad Tanudjaja, Henry Jonathan Akhondi, Ebrahim Krantz, William Bill Fane, Anthony Gordon Chew, Jia Wei |
author_sort |
Zamani, Farhad |
title |
Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications |
title_short |
Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications |
title_full |
Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications |
title_fullStr |
Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications |
title_full_unstemmed |
Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications |
title_sort |
flow-field mitigation of membrane fouling (fmmf) via manipulation of the convective flow in cross-flow membrane applications |
publishDate |
2017 |
url |
https://hdl.handle.net/10356/85616 http://hdl.handle.net/10220/43785 |
_version_ |
1681042516896382976 |