Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water
In order to precisely measure water impact loads of a spherical structure vertically dropping onto a calm water surface, a new validity check of the analysis using the levitation mass method experiment is proposed. The main feature of levitation mass method experiment is to obtain a better estimatio...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85782 http://hdl.handle.net/10220/45286 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-85782 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-857822023-03-04T17:15:48Z Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water Wang, Yonghu Shu, Dongwei Yusaku, Fujii Akihiro, Takita Tsuneaki, Ishima Ryosuke, Araki School of Mechanical and Aerospace Engineering Water Impact Fluid–structure Interaction In order to precisely measure water impact loads of a spherical structure vertically dropping onto a calm water surface, a new validity check of the analysis using the levitation mass method experiment is proposed. The main feature of levitation mass method experiment is to obtain a better estimation of early water impact loads through the application of Doppler effect. Experimental results of different heights are verified based on the Assessment Index and are in comparison with the classical experimental data for validation purpose. It shows that the levitation mass method measurement is useful and effective to obtain the water impact loads for the crashworthiness analysis. Besides, early water impact hydrodynamic behaviors are simulated based on the nonlinear explicit finite element method, together with application of a multi-material arbitrary Lagrangian–Eulerian solver. A penalty coupling algorithm is utilized to realize fluid–structure interaction between the spherical body and fluids. Convergence studies are performed to construct the proper finite element model by the comparison with experimental results, where mesh sensitivity, contact stiffness, and time-step size parametric studies are thoroughly investigated. The comparisons between experimental and numerical results show good consistency by the prediction of the water impact coefficients on the structure. Published version 2018-07-27T03:13:48Z 2019-12-06T16:10:07Z 2018-07-27T03:13:48Z 2019-12-06T16:10:07Z 2018 Journal Article Wang, Y., Shu, D., Yusaku, F., Akihiro, T., Tsuneaki, I., & Ryosuke, A. (2018). Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water. Advances in Mechanical Engineering, 10(1). 1687-8132 https://hdl.handle.net/10356/85782 http://hdl.handle.net/10220/45286 10.1177/1687814017748076 en Advances in Mechanical Engineering © 2018 The Author(s). Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). 15 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Water Impact Fluid–structure Interaction |
spellingShingle |
Water Impact Fluid–structure Interaction Wang, Yonghu Shu, Dongwei Yusaku, Fujii Akihiro, Takita Tsuneaki, Ishima Ryosuke, Araki Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
description |
In order to precisely measure water impact loads of a spherical structure vertically dropping onto a calm water surface, a new validity check of the analysis using the levitation mass method experiment is proposed. The main feature of levitation mass method experiment is to obtain a better estimation of early water impact loads through the application of Doppler effect. Experimental results of different heights are verified based on the Assessment Index and are in comparison with the classical experimental data for validation purpose. It shows that the levitation mass method measurement is useful and effective to obtain the water impact loads for the crashworthiness analysis. Besides, early water impact hydrodynamic behaviors are simulated based on the nonlinear explicit finite element method, together with application of a multi-material arbitrary Lagrangian–Eulerian solver. A penalty coupling algorithm is utilized to realize fluid–structure interaction between the spherical body and fluids. Convergence studies are performed to construct the proper finite element model by the comparison with experimental results, where mesh sensitivity, contact stiffness, and time-step size parametric studies are thoroughly investigated. The comparisons between experimental and numerical results show good consistency by the prediction of the water impact coefficients on the structure. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Wang, Yonghu Shu, Dongwei Yusaku, Fujii Akihiro, Takita Tsuneaki, Ishima Ryosuke, Araki |
format |
Article |
author |
Wang, Yonghu Shu, Dongwei Yusaku, Fujii Akihiro, Takita Tsuneaki, Ishima Ryosuke, Araki |
author_sort |
Wang, Yonghu |
title |
Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
title_short |
Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
title_full |
Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
title_fullStr |
Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
title_full_unstemmed |
Comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
title_sort |
comparison between numerical analysis and the levitation mass method measurement test of a spherical structure early impacting water |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/85782 http://hdl.handle.net/10220/45286 |
_version_ |
1759855497061597184 |