Spontaneous and superfluid chiral edge states in exciton-polariton condensates

We present a scheme of interaction-induced topological band structures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit inte...

Full description

Saved in:
Bibliographic Details
Main Authors: Sigurdsson, H., Li, G., Liew, Timothy Chi Hin
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/85823
http://hdl.handle.net/10220/45371
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We present a scheme of interaction-induced topological band structures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under nonresonant pumping we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under either nonresonant or resonant coherent pumping we find that it is also possible to engineer a topological dispersion that is linear in wave vector—a property associated with polariton superfluidity.