Chiral Bogoliubov excitations in nonlinear bosonic systems
We present a versatile scheme for creating topological Bogoliubov excitations in weakly interacting bosonic systems. Our proposal relies on a background stationary field that consists of a kagome vortex lattice, which breaks time-reversal symmetry and induces a periodic potential for Bogoliubov exci...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/85837 http://hdl.handle.net/10220/43876 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We present a versatile scheme for creating topological Bogoliubov excitations in weakly interacting bosonic systems. Our proposal relies on a background stationary field that consists of a kagome vortex lattice, which breaks time-reversal symmetry and induces a periodic potential for Bogoliubov excitations. In analogy to the Haldane model, no external magnetic field or net flux is required. We construct a generic model based on the two-dimensional nonlinear Schrödinger equation and demonstrate the emergence of topological gaps crossed by chiral Bogoliubov edge modes. Our scheme can be realized in a wide variety of physical systems ranging from nonlinear optical systems to exciton-polariton condensates. |
---|