Toroidal versus Fano Resonances in High Q planar THz Metamaterials

Radiative losses are crucial in optimizing the performance of metamaterial-based devices across the electromagnetic spectrum. Introducing structural asymmetry in meta-atom design leads to the excitation of sharp Fano resonances with reduced radiative losses. However, at larger asymmetries, the Fano...

Full description

Saved in:
Bibliographic Details
Main Authors: Gupta, Manoj, Singh, Ranjan
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/85846
http://hdl.handle.net/10220/43868
https://doi.org/10.21979/N9/5RYPXN
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Radiative losses are crucial in optimizing the performance of metamaterial-based devices across the electromagnetic spectrum. Introducing structural asymmetry in meta-atom design leads to the excitation of sharp Fano resonances with reduced radiative losses. However, at larger asymmetries, the Fano resonance becomes highly radiative which results in the broadening of the asymmetric line shaped resonances. Here, the authors experimentally demonstrate a scheme to couple mirrored asymmetric Fano resonators through interaction of anti-aligned magnetic dipoles which results in a strong toroidal resonance in 2D planar metasurface. The quality (Q) factor and the figure of merit of the toroidal dipolar mode are significantly higher than the Fano resonance. Moreover, the authors discover that the exponential decay of the Q factor of toroidal resonance mode occurs at half the rate of that in the Fano resonance as the asymmetry of the system is enhanced which indicates significant tailoring and the suppression of the radiative loss channel in the toroidal configuration. The weakly radiative toroidal resonance in planar metamaterials offers the potential for applications in terahertz and optical sensing, spectroscopy, narrow-band filtering, and large modulation.