Dzyaloshinskii–Moriya interaction induced domain wall depinning anomaly in ferromagnetic nanowire

Magnetic domain wall positional manipulation is usually through the introduction of potential trap. In this work, we show that the presence of interfacial Dzyaloshinkii–Moriya interaction leads to a different static depinning field for Néel domain walls with the same handedness in a notched magnetic...

Full description

Saved in:
Bibliographic Details
Main Authors: Teoh, Han Kheng, Goolaup, Sarjoosing, Lew, Wen Siang
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/85931
http://hdl.handle.net/10220/43903
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Magnetic domain wall positional manipulation is usually through the introduction of potential trap. In this work, we show that the presence of interfacial Dzyaloshinkii–Moriya interaction leads to a different static depinning field for Néel domain walls with the same handedness in a notched magnetic nanowire. The difference in static depinning field is due to the Néel domain wall spin orientation. The spin orientation leads to different torques being exerted on the localized magnetic moments. This inherently imposes a spin orientation dependent diode-like behavior for domain walls in a notched nanowire. An equation which relates the difference in static depinning field to the notch geometry is derived. Micromagnetic simulation with varying damping constant reveals the influence of damping constant on the strength of depinning anomaly.