Counting via LED sensing : inferring occupancy using lighting infrastructure
As a key component of building management and security, occupancy inference through smart sensing has attracted a lot of research attention for nearly two decades. Nevertheless, existing solutions mostly rely on either pre-deployed infrastructures or user device participation, thus hampering their w...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/86175 http://hdl.handle.net/10220/49263 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | As a key component of building management and security, occupancy inference through smart sensing has attracted a lot of research attention for nearly two decades. Nevertheless, existing solutions mostly rely on either pre-deployed infrastructures or user device participation, thus hampering their wide adoption. This paper presents CeilingSee, a dedicated occupancy inference system free of heavy infrastructure deployments and user involvements. Building upon existing LED lighting systems, CeilingSee converts part of the ceiling-mounted LED luminaires to act as sensors, sensing the variances in diffuse reflection caused by occupants. In realizing CeilingSee, we first re-design the LED driver to leverage LED’s photoelectric effect so as to transform a light emitter to a light sensor. In order to produce accurate occupancy inference, we then engineer efficient learning algorithms to fuse sensing information gathered by multiple LED luminaires. We build a testbed covering a 30 m2 office area; extensive experiments show that CeilingSee is able to achieve very high accuracy in occupancy inference. |
---|